
Lecture 15: Time Complexity Classes

Ryan Bernstein

1 Introductory Remarks

• Assignment 4 is posted now. This assignment is optional. If you’d like to boost your homework grade
(or if you just want the practice), you’re welcome to submit it, at which point both the numerator
and denominator of your homework score will be updated accordingly. If you don’t feel like doing it,
though, you can keep your current homework grade.

– Assignment 4 is due next Thursday (June 2nd)

• This is week 9. We’re nearing the end of the term, and we’re also nearing the end of the material.
We have two meetings this week and two meetings next week. It’s possible that we’ll reach the end
of the material covered on the final exam either today or Thursday.

I’d intended to devote next Thursday to a practice exam, as we did for the midterm. This means
that there may be one or two lectures unallocated. We have a few choices for things we could do
during this time.

– We could just take the day off, as I’m sure you’ve got stuff going on in other classes

– We could delve further into some interesting topics that won’t be covered on the exam, including:

∗ Techniques used to find approximate solutions to problems for which optimal solutions are
prohibitively expensive to compute (we’ll see examples of such problems today), including
constraint relaxation and randomness

∗ Deterministic context-free grammars and their use in programming languages, which is
basically the only time that context-free grammars are interesting or useful at all

∗ Space complexity

– If there are any topics from any point in the term that you feel were not covered in sufficient
detail (or that you’re just feeling rusty on), we could review these topics

Regardless of what you choose, I’ll inform you when we reach the end of the material on which you’ll
be tested, and attendance at any subsequent lectures will be strictly optional.

1.1 Recapitulation

Last time, we discussed the runtime of Turing machines. We measure the runtime of a Turing machine in
terms of the total number of transitions that the machine must follow. We analyze runtime as a function of
the size of the input string w on which a machine operates. These functions analyze “worst-case” running

1

time — that is, if the runtime of a machine is f(n), then f(n) is the maximal number of steps used on any
input of length n.

We also analyze running time in terms of “Big-O” asymptotic notation. If f and g are both functions from
N→ N, then f(n) = O(g(n) if for some integers n0 and c, n > n0 → f(n) ≤ c ·g(n). Intuitively, this means
that a graph of g (possibly scaled by some constant factor c will eventually overtake and surpass a graph
of f .

This allows us to disregard details that we don’t want to deal with, including constant factors, lower-order
polynomial terms, and logarithmic bases.

We also ended with the following worksheet exercise, which we didn’t have time to discuss. So here it is
again.

Worksheet Exercise Consider the following two-tape Turing machine that also decides {0n1n | n ≥
0}:

M = “On input w:

1. If the input is not of the form 0∗1∗, Reject

2. For each zero in the input, write a one to tape 2

3. Return tape 2’s head to the left

4. For each one in the input, ensure that we see a one on tape 2

• If either tape sees a blank before the other, Reject

• If both tapes read blanks at the same time, Accept”

Find the time complexity of M .

2 Time Complexity Classes

We can now partition the set of Turing-decidable languages into time complexity classes. We define
complexity classes as follows:

TIME(f(n)) = {L | L is a language decidable by an O(f(n))-time single-tape deterministic Turing machine}

Note that this is a set of languages, not a set of Turing machines. This means that to show that a language
is outside a complexity class, it’s not sufficient to show that a Turing machine exists that runs in more
than f(n) steps. Rather, we’d need to show that no O(f(n))-time Turing machine could possibly exist to
decide that language, which is a much trickier problem. As we’ll see, we don’t really have a great way to
do this.

We’ll also introduce another way of looking at time complexity, this time in terms of nondeterministic
machines:

NTIME(f(n)) = {L | L is a language decidable by an O(f(n))-time single-tape nondeterministic Turing machine}

2

2.1 Important Complexity Classes

There are a few larger complexity classes that are very noteworthy and important. Unfortunately, this is
probably going to be the most confusing lecture of the term. It’s not because these concepts are particularly
difficult to understand, but instead because computer scientists just suck at naming things. We’re going
to introduce several complexity classes that are named very similarly, but mean very different things.
Sorry.

The first two complexity classes we’re going to discuss are called P and NP .

2.1.1 P

P is pretty self-explanatory, although since we’re computer scientists, we do have a way to write it that
makes it look scary:

P =
⋃
k≥0

(TIME(nk))

What does this mean, in English? The answer is actually pretty simple: the giant U is a union operator,
so this means that P is the union of all complexity classes of the form nk for any k ≥ 0. It would probably be
clearer to write P = {L | L is a language decidable by an O(nk)-time single-tape deterministic Turing machine for some k ≥ 0},
but I didn’t write this book.

The problem that we looked at on the worksheet today is an example of a problem in P . During the last
lecture, we showed that the language {0n1n | n ≥ 0} was decidable by an O(n2)-time Turing machine.
Since n2 is a polynomial, we say that this problem is in P , the class of problems that can be solved by a
deterministic Turing machine in polynomial time.

2.1.2 NP

NP is similar. The P once again stands for “polynomial”. The N stands for “nondeterministic”. Given
that, you can probably guess where we’re going with this, but:

NP =
⋃
k≥0

(NTIME(nk))

In other words, NP is the class of all problems solvable by a nondeterministic Turing machine in a
polynomial number of steps.

Since we can consider a deterministic machine as a nondeterministic machine that never branches, we can
conclude that P ⊆ NP . We’ll look at this relationship in greater detail later.

Example Let Hampath = {〈G〉 | G is a graph for which a Hamiltonian path exists}. (A Hamiltonian
path is a path that visits every node in the graph exactly once, without repetition.) Show that Hampath
is in NP .

We can construct a nondeterministic Turing machine N that decides Hampath pretty easily. N = “On
input w:

3

1. Nondeterministically generate all |V |! permutations of all |V | vertices. (Note that each branch can
do this in O(|V |) time.) For each branch:

(a) For each consecutive vivj in the generated path:

• If E does not contain an edge from vi to vj , Reject

(b) Accept”

3 Solvers and Verifiers

There’s one issue with our definition of NP , which we touched on during the last lecture. The problem is
that nondeterministic machines aren’t really a realistic model of computation. Even if we create machines
that run in parallel, we have some fixed-number of cores. My desktop can run four threads in parallel —
eight if you count hyperthreading as parallelism — but when we build nondeterministic machines, we’re
counting on the ability to execute an unlimited number of branches simultaneously.

Consider the problem of cracking encryption keys that we discussed last time. We said that if I were to try
all possible 2048-bit RSA encryption keys in sequence, a computer that could try 10,000 keys per second
would take 10606 years to exhaust the keyspace. A nondeterministic machine, on the other hand, could
simply try all of the keys at once, solving the problem near-instantly.

It makes sense, then, to define NP in terms of deterministic machines, which more closely model the things
of which computers are actually capable. To find a way of doing this, we can again consider the problem
of encryption. While it may take 10606 years to try every key in the keyspace, it certainly does not take
this long to actually use one of these keys.

We can redefine NP as follows:

NP = {L | L is a problem that can be verified in polynomial time by a deterministic Turing machine}

Verifiers are similar to solvers, but they take an additional input called a certificate. This certificate is a
candidate solution. In the Hampath example we discussed before, we’re trying to decide whether or not
a Hamiltonian path exists in the graph G. A verifier for Hampath would then take a certificate that was
a permutation of all |V | nodes. If this permutation was a Hamiltonian path in G, the verifier Accepts;
otherwise, it Rejects.

Example Construct a poly-time deterministic verifier to show that Hampath ∈ NP .

c is a permutation of all of the vertices in |V |.

V = “On input 〈G, c〉:

1. For each consecutive vivj in the generated path: O(|V |)

• If E does not contain an edge from vi to vj , Reject O(|E|)

2. Accept” O(1)

4

Example Let Knapsack = {〈V,W, x, k〉 | V is a set of item values, W is a set of corresponding item
weights, and some combination of items has a value of at least x with a weight that does not exceed k}.
Construct a poly-time deterministic verifier to show that Knapsack ∈ NP .

c is a set of item indices. We’ll let N be the number of items (|V | = |W | = N).

V = “On input 〈V,W, x, k, c〉:

1. For each i ∈ c: O(N)

(a) Add Wi to a weight accumulator w O(n)

(b) If w > k, Reject O(n)

(c) Add Vi to a value accumulator v O(n)

2. If v ≥ x, Accept” O(n)

Note that since we’ve added accumulators, we mark updates to these accumulators as O(n) since we have no
random access and are probably storing them after the input. We could also simply use a multi-tape Turing
machine and write these on another tape. Since every f(n)-time multi-tape machine can be emulated by
a O(f2(n))-time single-tape machine, this doesn’t change the fact that the machine runs in polynomial
time.

Worksheet Example Let SubsetSum = {〈S, v〉 | S is a set of integers with a subset that sums to v}.
Construct a deterministic verifier that shows that SubsetSum ∈ NP .

4 Poly-Time Reducibility

We’ve now introduced a difficulty spectrum, with problems in NP being conceptually “harder” than prob-
lems in P . We can determine the relative positions of problems on this spectrum using reductions.

We say that a decision problem A is poly-time reducible to a decision problem B — written A ≤p B — if
there exists a computable function F such that:

1. ∀s(s ∈ A→ F (s) ∈ B)

2. ∀s(s /∈ A→ F (s) /∈ B)

3. F runs in polynomial time.

Informally, we’d introduced mapping reductions as meaning that a solution to B could be used to solve A.
Now, we take this one step further and place bounds on the runtime of a solver for A.

Theorem If A ≤p B and B ∈ P , then A ∈ P .

Assume that B ∈ P . Then there exists a machine MB that decides B in polynomial time. If A ≤p B,
then we can convert a candidate solution for A into a candidate solution for B in polynomial time. We
can therefore construct a poly-time solver for A as follows:

M = “On input w:

1. Compute F (w)

5

2. Run MB on F (w).

• If MB accepts F (w), Accept w

• If MB rejects F (w), Reject w”

We also introduced mapping reductions as meaning that A was not harder than B. We can consider
poly-time reductions the same way, although our concept of “difficulty” is now time-sensitive.

5 NP-Hardness

We can now use the idea of poly-time reducibility to relate problems to each other, and this allows us
to introduce a more meaningful class of problems, called NP -hard. Because computer scientists suck at
naming things, NP -hard is not actually part of NP . Rather, NP -hard is the set of all problems to which
all problems in NP are poly-time reducible.

6 P vs. NP

We’ve been speaking extremely vaguely about the differences between these problems and problem classes.
All that poly-time reductions allow us to say is that one problem is not harder than another. However, it’s
very difficult to place any given problem on our difficulty spectrum. It’s possible that poly-time solutions
to problems that we place in NP or call NP-hard exist, but have yet to be found.

We can actually extend this to our notion of difficulty classes. We say that every problem in NP is poly-
time reducible to any given NP-hard problem. This means that if a poly-time solution was found for any
NP-hard problem, every problem in NP would be solvable in polynomial time. Since we say that P is the
class of all problems solvable in polynomial time, this would mean that P and NP were the same.

Why is this significant? We have another, more informal definition for P. If a problem is solvable in
polynomial time, we say that these problems are solvable efficiently, or in a reasonable amount of time.
We generally think of something like bubble sort — with it’s O(n2) running-time — as being inefficient.
But this inefficiency pales in comparison to deterministically solving a problem in NP. Again, this is the
difference between the “do I have time to make a cup of coffee before this finishes?” kind of inefficiency
and the “will life on Earth still exist when this finishes” type of inefficiency.

Some of these problems in NP are also very important. This includes prime number factorization, which
could be used to break some encryption schemes. There are also problems such as optimal protein folding,
which could probably do some cool medical stuff that I am in no way qualified to talk about. Fast solutions
to these problems have the potential to be world-changing.

Of course, this idea of “efficiency” is somewhat overblown. Polynomial or even constant-time solutions
still have the potential to take unreasonably long to solve. If we could guarantee that RSA-key lenghts
would never grow beyond 2048 bits, for example, a brute-force attack on RSA keys technically runs in
constant-time. But faster solutions to these problems could have the potential to significantly advance
technology.

The relationship between P and NP is currently unknown, which means that we’ve actually reached an
open problem at the very edge of computer science. So that’s cool.

6

